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Fault diagnosis methods of rotating
machinery based on mathematical

morphology

Jumei Zhang1

Abstract. To make a fault diagnosis of rotating machinery, it is necessary to use the Local
Characteristic-scale Decomposition (LCD) to remove the noise before the fractal method. The
major reason is that the fractal method is sensitive to mechanical noise. LCD and mathematical
morphology method are combined for the diagnosis of mechanical failure, and in this ways, more
accurate results can be obtained than that under the box dimensions. In addition, the morphological
fractal dimension is used to calculate the fractal dimension of the main component, and the degree
of discrimination of each state can be clearly depicted by curve description. And the results
showed that the fault state of rolling bearing can be effectively identified and fault diagnosis can
be realized. At last, it is concluded that the method based on LCD decomposition and morphology
fractal dimension can successfully do the fault diagnosis, which has great application value and
good prospect.
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1. Introduction

With the development of economic globalization and science and technology, peo-
ple had a higher request in the stable and efficient operation of the machinery and
equipment in industrial. More and more attention had been paid to the equipment
fault diagnosis technology. Rolling bearings are one of the most commonly compo-
nents used in mechanical equipment, but they are also particularly vulnerable to
damage, which is detrimental to the life of the entire system and normal produc-
tion. So, it is necessary to detect and diagnose the failure state of machinery and
equipment bearing.

In 1991, Koskinen extended the traditional mathematical morphology operator,
and proposed soft mathematical morphology. Soft mathematical morphology means
to replace the maximum and minimum operation in the traditional mathematical
morphology as weighted ordering statistics. Its structure elements include two parts:
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hardcore and soft boundary [1]. In 1990s, Sinha and other scholars introduced fuzzy
theory into traditional mathematical morphology, and put forward fuzzy mathemat-
ical morphology. It used membership function to achieve the operation between
structure operator and fuzzy images. As a result, compared with traditional mathe-
matical morphology, fuzzy mathematical morphology has stronger noise suppression
capability. At present, application of morphology based on single scale structure
element is widely studied. Zhang Lijun used generator signal for the filtering pro-
cessing, and then he applied morphology non-sampling wavelet for the rotor wave
processing and Shen Lu made use of morphology wavelet and morphology non-
sampling to make filtering processing of gearing and rolling, respectively [2]. All of
these studies laid a foundation for the further study of mathematical morphology.
Mechanical fault diagnosis is an actually signal processing. The fault signal is typi-
cally non-linearity and non-stationarity. The fractal dimension of the mathematical
morphology can effectively analyze and characterize the nonlinear behavior of the
fault signal. However, the measured bearing vibration signal often contains a lot of
system background noise. Because the mathematical morphology fractal dimension
is very sensitive to noise, so the measured signal must be denoised to get the ac-
curate fractal dimension, and the traditional linear filter is usually not competent
[3]. A new adaptive time-frequency analysis method—Local Characteristic-Scale
Decomposition (LCD) is proposed, which can decompose the vibration signal into
a single rotation component with physical meaning at instantaneous frequency. In
this paper, the LCD method is combined with the fractal dimension of the morphol-
ogy, and the vibration signal is decomposed by the LCD. The components of the
main characteristic frequency are used as the fault signals to be analyzed. The mor-
phological fractal dimension is used to calculate the fractal dimension of the main
component, and the degree of discrimination of each state can be clearly depicted
by curve description, which can effectively identify the fault state of rolling bearing
and realize the fault diagnosis of rolling bearing.

2. Materials and methods

2.1. Mathematical morphology

The basic idea of using mathematical morphology to measure the complexity of
the nonlinearity of vibration signals at different scales is that the results of covering
the one-dimensional vibration signals with planar setB in the process of dealing with
one-dimensional fault signals are regarded as one-dimensional structural elements g
to detect the signal, which is an equivalent method, in which the structural element
is the upper bound of the planar set B. Based on the above-mentioned idea, the
concrete method steps are as follows [4]: the one-dimensional discrete vibration
signal f (n) (n = 0, 1, · · · , N) , g (m) is the one-dimensional unit structure element
defined on G = {0, 1, 2, · · · ,M − 1}. One-dimensional morphology corrosion and
expansion are carried out to measured signal, and the scale ε = 0, 1, 2, · · · , εmax

represents the discrete scale range. The vibration signals are expanded and corroded
by one-dimensional discrete function as the unit structure element at each scale.
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2.2. Analysis of simulation signal

In order to verify the effectiveness of fractal dimension estimation method based
on mathematical morphology, Weierstrass cosine function (WCF) is used as the
fractal signal, which is defined as [5]:

WH (t) =

∞∑
k=0

γ−kH cos
(
2πγkt

)
, (0 < H < 1) . (1)

In the formula, γ > 1. WCF is a continuous but not differentiable signal, and
the fractal dimension of WH is D = 2 − H in theory. The sampling frequency of
the simulation signal is 1024Hz, the number of sampling points is 2048, and the
parameters are set to γ = 5 and k = 20 [6–7]. Table 1 shows the WCF signals of
three different dimensions (D = 1.4, 1.6, 1.8).

At present, the Box-counting method is the most widely used signal estimation
method, but because the box dimension divides the grid regularly, there is a problem
that the fractal dimension estimation is inaccurate. However, the mathematical mor-
phology is not affected by these factors, and the calculation results are more accurate
[8]. Table 1 is the result of using box counting and fractal dimension estimation to
deal with the signal. From Table 1, it can be seen that the fractal dimension of
the box counting method is generally low, the error is larger than the mathematical
morphology, and the morphology is more accurate, and the computational efficiency
of mathematical morphology is higher than the box dimension.

Table 1. Fractal dimension estimation of WCF signal

Methods Actual value D = 1.4 D = 1.6 D = 1.8

Box-counting method Estimated value 1.3497 1.4997 1.6553

Relative error 3.59% 6.26% 8.04%
Morphological method Estimated value 1.4386 1.6200 1.8076

Relative error 1.97% 1.25% 0.42%

The WCF signal was morphologically covered with structural elements of sizes
32 and 64. Figure 1 shows the expansive corrosion results of W0.4 (t) at scales 32
and 64.

2.3. LCD decomposition method

LCD’s premise is that all the signals are regarded as to be composed of differ-
ent single-component ISC, and any two ISC components are independent of each
other. So that the signal x(t) can be decomposed into the sum of the independent
components, and these feature-scale components meet the following two conditions:

In the whole interval, the maximum value is positive, the minimum is negative,
and there is monotony between any two adjacent. In the whole interval, the extreme
point of the component is set to (τk, Xk), k = 1, 2, · · · ,M , M being the number of
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extreme points [9]. Therefore, the straight line

Fig. 1. Double logarithmic curve of W0.2 (t)

lk

{
y = Xk +

Xk+2 −Xk

τk+2 − τk
(t− τk)

}
is determined by any two adjacent extremums (maximum or minimum) (τk, Xk) and
(τk+2, Xk+2) in the data segment, the ratio of the value Ak+1 of this line in τk+1

and the function value at this point are unchanged, as shown in Fig. 2.

A2

X2
= · · · = A6

X6
= · · ·µ . (2)

Fig. 2. Conditions for the intrinsic scale component
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In the simulation signal, µ may not change, but in the actual signal, its value
must not be so stable, so it can be changed in a certain range of permission.

The general form is [10]:

aAk+1 + (1− a)Xk+1 = 0, a ∈ (0, 1) , (3)

Ak+1 = Xk +

(
τk+1 − τk
τk+2 − τk

)
(Xk+2 −Xk) . (4)

When a = 0.5, Ak+1 = −Xk+1.

3. Results

The following signals are used to investigate the decomposing effect of the LCD:

x (t) = x1 (t) + x2 (t) = [1 + 0.5 cos (20πt)] sin
(
200πt+ 200t2

)
+ sin (40πt) . (5)

The simulation signal is composed of an amplitude modulation and frequency
modulation signal and a sinusoidal signal.

From the decomposition results of the LCD, it can be seen that this method can
decompose the frequency components in the simulation signal very well. CISC3 has
a small fluctuation after processing the end effect by the extension method, and the
processing result is ideal. The results show that LCD is an effective and feasible
decomposition method.

In the case of adaptive time-frequency analysis, such as Empirical Mode Decom-
position (EMD) and Local Mean Decomposition (LMD), these methods only give
their components with the physical meaning [11]. The conditions that the intrinsic
mode function (IMF) component EMD definite by EMD or the PF component in
LMD need to meet are the sufficient conditions of instantaneous frequency with the
physical meaning, but not a necessary condition, that is, as long as certain conditions
are met, a single component signal can have physical significance. In addition, the
cubic spline function is used to deal with the end-effect in the EMD method, which
often has over-envelope, under-envelope phenomenon in the formation of the upper
and lower envelopes, and the mode aliasing is serious. However, the LMD method
has more end-effects than the EMD method, and the range of the LMD method is
small, but the LMD algorithm has its own limitations [12]. In the decomposition of
LMD algorithm, it uses the moving average algorithm to calculate the local mean
function and local envelope function, while the moving average algorithm is a cycle
of multiple iterations, so the calculation is very large. For these reasons, the compo-
nents defined by EMD and LMD often result in unreliable methods. Therefore, this
paper combines a new instantaneous frequency with physical meaning of the decom-
position method LCD with the morphology. Experiments show that this method is
effective.

The experimental data is from the bearing data of deep groove ball bearing
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fault whose bearing model is 6205-2RS JEM SKF in United States West Reserve
University [13]. The four failure types of the rolling bearing failure in normal test
platform, rolling element failure, inner ring failure and outer ring failure are used.

It can be seen from Fig. 3 that when the vibration signal is not denoised, the
fractal dimension of the rolling element fault has two sudden ups and down at the
position of sample 4 to 8, which cause the interference by overlapping with the curve
of the normal state and the inner fault state. The curve of fractal dimension overlap
twice in inner-circle fault and in the normal state, which makes the fault state
unrecognizable. As the LCD method can decompose the original signal from high
frequency to low frequency into several components, the high frequency component
is often the best to reflect the fault feature information [14]. Therefore, usually the
first component after the characteristic scale decomposition is calculated, and the
vibration state of each failure can be effectively discriminate. Figure 3 is the first
intrinsic component of the signal corresponding to Fig. 4.

Fig. 3. Morphology fractal dimension of bearing faults signal

From the decomposition results of the LCD, it can be seen that this method can
decompose the frequency components in the simulation signal very well, and the
CISC3’s fluctuation is small, and the processing result is ideal after dealing with
the endpoint effect by the extension method. The results show that LCD is an
effective and feasible decomposition method [15]. The first component is analyzed
and processed by mathematical morphology, and a signal fractal is obtained as shown
in Fig. 5. From the figure we can see that the fractal dimension is maximum in normal
state of the bearing. Because there is no significant impact from the outside world
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Fig. 4. The first component of the signal of four bearing fault conditions: (a)–first
component of the rolling bearing inner ring, (b)–first component of the rolling
bearing outer ring, (c)–first component of the rolling element of rolling bearing,

(d)–first component of the normal state of rolling bearing
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in normal state, and it is similar to the random signals in probability distribution,
the randomness is equivalent to the instability in various states, which also coincides
with the definition of the dimension in the mathematical morphology. While the
inner ring fault and the rolling element failure are fault signals with obvious impact,
so their dimensions are relatively small, but there is not much difference between
the dimensions. While the impacts to the outer ring are relatively large, and the
features are relatively obvious, so the dimension is smaller than the other fault
types [16]. Although the fractal curves of the inner ring and the rolling element
has once intersected, this does not affect the accurate discrimination of them. The
fractal dimension of mathematical morphology based on LCD can distinguish the
four states better. The experimental results show the effectiveness and feasibility of
the method.

Fig. 5. The first CISC morphology fractal dimension of bearing fault signals

4. Conclusion

In this paper, a fault diagnosis method of rolling bearing based local feature scale
decomposition and fractal dimension is studied. The simulation results showed that
the mathematical morphology has better accuracy and computational efficiency than
the box dimension. The LCD method can separate the fault signal characteristic
component from the background noise or other interference signal to improve the
accuracy of the fault identification. After the fault signal is decomposed by the LCD
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method, the ISC component of the characteristic fault signal is obtained. The fractal
dimension of each ISC component is calculated and used as the characteristic pa-
rameter to judge the state. At last, the normal bearing, rolling element failure, inner
ring fault and outer ring fault are analyzed. The results show that the method based
on LCD decomposition and morphology fractal dimension can effectively realize the
diagnosis of rolling bearing fault state.
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